Table II. Exact Masses of Selected Ions in the Mass Spectrum of TNT

observed mass, amu	emperical formula	calcd mass, amu	deviation, mmu
210.0149	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{5}$	210.0151	-0.2
209.0076	$\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{5}$	209.0073	+0.3
193.0121	$\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{4}$	193.0124	-0.3
180.0171	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}$	180.0171	0
179.0088	$\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$	179.0092	-0.4
166.0017	$\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$	166.0015	+0.2
164.0222	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}$	164.0222	0
163.0144	$\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$	163.0144	0
151.0148	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$	151.0143	+0.5
149.0113	$\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{3}$	149.0113	0
134.0241	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{2}$	134.0242	-0.1
120.0088	$\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NO}_{2}$	120.0086	+0.2
117.0215	$\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}^{2}$	117.0215	0
105.0218	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NO}_{0}$	105.0215	+0.3
104.0262	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}$	104.0263	-0.1
103.0185	$\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{3}$	103.0184	+0.1
89.0392	$\mathrm{C}_{7} \mathrm{H}_{5}$	89.0392	0
88.0313	$\mathrm{C}_{7} \mathrm{H}_{4}$	88.0313	0
87.0236	$\mathrm{C}_{7} \mathrm{H}_{3}$	87.0235	+0.1
77.0265	$\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}^{2}$	77.0266	-0.1
76.0316	$\mathrm{C}_{6} \mathrm{H}_{4}$	76.0313	+0.3
74.0161	$\mathrm{C}_{6} \mathrm{H}_{2}$	74.0156	+0.5
63.0246	$\mathrm{C}_{5} \mathrm{H}_{3}$	63.0235	+1.1
62.0169	$\mathrm{C}_{5} \mathrm{H}_{2}$	62.0156	+1.3

($2,4,6-{ }^{15} \mathrm{NO}_{2}$)-TNT, as shown in Table I. Other mechanisms, Including the total scrambling of hydrogen and deuterlum, produce generally lower ratios of $\left[\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{D}\right]^{+}$to $\left[\mathrm{C}_{5} \mathrm{HD}_{2}\right]^{+}$and $\left[\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{D}\right]^{+}$to $\left[\mathrm{C}_{5} \mathrm{D}_{3}\right]^{+}$than is found experimentally. It is likely that other scrambling does occur in the $\left[\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{D}_{3}\right]^{+}$ion in addition to that which we have considered. However, the exact solution undoubtedly includes a major contribution from the proposed pathway.

Finally, there is the question of ring fragmentation in TNT. We have verified by metastable analysis a limited number of
ring degradation reactions where a ring carbon atom is involved. These are summarized in Figure 3.

Reglatry No. TNT, 118-96-7; $\alpha-d_{3}$-TNT, 52886-05-2; (4- ${ }^{15} \mathrm{NO}_{2}$)-TNT, 83858-97-3; (2,6- ${ }^{15} \mathrm{NO}_{2}$)-TNT, 86456-41-9; (2,4,6- ${ }^{15} \mathrm{NO}_{2}$)-TNT, 86456-42-0; $\alpha-d_{3}-\left(2,4,6-{ }^{15} \mathrm{NO}_{2}\right)-$ TNT, $86456-43-1$; 2,4-dinitrotoluene, 121-14-2; 4nitrotoluene, 99-99-0; toluene, 108-88-3.

LIterature CIted

(1) Shackelford, S. A.; Beckmann, J. W.; Wllkes, J. S. J. Org. Chem. 1977, 42, 4201.
(2) Beckmann, J. W.; Wilkes, J. S.; McGuire, R. R. Thermochim. Acta 1977, 19, 11.
(3) Guldry, R. M.; Davis, L. P. Thermochlm. Acta 1979, 32, 1.
(4) Carper, W. R.; Davis, L. P.; Extine, M. W. J. Phys . Chem. 1982, 86, 459.
(5) Dennis, W. H.; Rosenblatt, D. H.; Blucher, W. G.; Coon, C. L. J. Chem. Eng. Data 1975, 20, 202.
(6) Bulusu, S.; Axenrod, T. Org. Mass Spectrom. 1979, 14, 585.
(7) Myerson, S.; Puskas, I.; Flelds, E. K. J. Am. Chem. Soc. 1986, 88 , 4974.
(8) Myerson, S.; VanderHaar, R. W.; Flelds, E. K. J. Org. Chem, 1972, 37, 4114.
(9) Budzikiewicz, H.; Djerassi, C.; Willams, D. H. "Mass Spectrometry of Organic Compounds"; Holden-Day: San Franclsco, CA, 1967.
(10) Collin, J. Bull. Soc. R. Scl. Llege 1954, 23, 194.
(11) Larkins, J. T.; Saalfield, F, E.; Kaplan, L. Org. Mass Spectrom. 1969, 2, 213.
(12) Rinehart, K. L.; Buchholz, A. C.; Van Lear, G. E.; Cantrill, H. L. J. Am. Chem. Soc. 1966, 90, 2983.
(13) Rylander, P. N.; Myerson, S.; Grubb, H. M. J. Am. Chem. Soc. 1957, 79,842 .
(14) Myerson, S. J. Am. Chem. Soc. 1963, 85, 3340.
(15) Meyer, F.; Harrison, A. G. J. Am. Chem. Soc. 1984, 86, 4757.
(16) Slegel, A. S. J. Am: Chem. Soc. 1970, 92, 5277.
(17) Howe, I.; McLafferty, F. W. J. Am. Chem. Soc. 1971, 93, 99.

Recelved for review August 20, 1982. Revised manuscript recelved December 13, 1982. Accepted May 16, 1983. Financlal support was provided W.R.C. by fellowships from AFOSR and the Natlonal Research Council. The high-resolution mass-spectral and MIKES measurements at the University of Nebraska were supported by the National Science Foundation Regional Instrumentation facilities program.

Preparation of 2-Amino-2,3-dihydrobenzimidazole and Its Derivatives

Marek Studnickl
Institute of Inorganic Chemistry, Gl/wice, Poland

New compounds, derivatives of

2-amino-2,3-dihydrobenzimidazole, were prepared by modified Gabryel reaction of 2-chloro-2,3-dihydrobenzimidazole with potasslum phthallmide. Their mass spectra are presented.

The well-known methods of synthesis of 2,3-dihydrobenzimidazole derlvatives are the reactions of aldehydes or ketones with o-phenylenediamine. The products of the reactions are often a mixture of compounds that are difficult to separate (1-3). Recent publications describe the synthesis of derivatives of 2-thloxo-2,3-dihydrobenzimldazole in the reaction of 0 phenylene dilisocyanate with amines (4), and of derivatives of 2-oxo-2,3-dihydrobenzimidazole which were obtained in the Curtius rearrangement (5).

2-Amino-2,3-dihydrobenzimidazole and its derivatives are new compounds.

In ref 6 was described a method of preparation of 2-chloro-2,3-dihydrobenzimidazole from chloroform and 0 phenylenedlamine.

Table I. Melting Points, NMR Data, and Yields of
2-Amino-2,3-dihydrobenzimidazole and Its Derivatives

compd	$\mathrm{mp},{ }^{\circ} \mathrm{C}$	${ }^{1} \mathrm{H}$ NMR δ	yield, \%
1	210	$\begin{aligned} & 7(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}, \\ & 2-\mathrm{H}, \mathrm{CH}), 6.6(\mathrm{NH}), \\ & 6.8-7.4(\mathrm{ArH}) \end{aligned}$	94
5	102	$\begin{aligned} & 6.5(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \\ & 2-\mathrm{H}, \mathrm{CH}), 4.4(\mathrm{NH}), \\ & 6.2-6.8(\mathrm{ArH}) \end{aligned}$	23
2	166		90
3	sub 340		59
4	sub 320 , romb cryst		95
5	136		11
5 6	98 211		${ }^{118} 8$

The methods of preparation of 2-amino-2,3-dihydrobenzimidazole and its derivatives are presented in Scheme I. Melting points, NMR data, and yields of these compounds are presented in Table I.

Table II. Mass Spectra of 1, 5, and 5'

	rel intensity		
m / e	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{5}^{\prime}$
254^{a}		0.02	0.04
119	0.08	0.24	
118	7.65	7.68	7.35
109	100	100	100
108	21.54	9.26	9.43
107	4.2	1.2	1.15
91	1.16	0.03	
90	19.89	7.5	7.59
81	54.16	8.3	8.4

Table III. Mass Spectrum of $5^{\prime \prime \prime} a$

m / e	rel intensity	m / e	rel intensity
296	0.9	148	13.22
225	10.63	147	12.52
224	84.27	133	15.83
193	17.92	119	6.43
192	100	59	9.36
160	20.31	45	9.29
$a 15 \mathrm{eV}$.			

Table IV. Mass Spectrum of 3^{a}

m / e	rel intensity	m / e	rel intensity
237	1.83	132	12.13
220	2.42	108	2.58
163	10.19	105	3.61
162	100	104	29.01
133	1.88	32	12.13
$a 15 \mathrm{eV}$.			

Table V. Mass Spectrum of 6^{a}

m / e	rel intensity	m / e	rel intensity
268	22.53	167	10.78
228	16.23	136	14.41
221	24.96	135	69.13
220	100	119	3.4
192	5.8	93	69.47
$a 15 \mathrm{eV}$.			

The new compounds gave satisfactory elemental analyses, mass spectra, and ${ }^{1} \mathrm{H}$ NMR data. The mass spectra of 1,5 , and 5^{\prime} were similar (Table II). In these spectra ions appeared at $m / e 118$ (benzimidazole), 108 (o-phenylenediamine), 91 $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right), 80\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NH}\right)$. The mass spectrum of 5^{\prime} contained an $M+1$ ion at $m / e 254$.

In Table III are presented the mass spectral data of $5^{\prime \prime \prime}$: m/e $296\left(\mathrm{M}^{+}\right), 224\left(0-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NH}(\mathrm{CO}) \mathrm{OCH}_{3}\right)_{2}\right), 192\left(0-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}-\right.$ $\left.\left(\left(\mathrm{COOOCH}_{3}\right) \mathrm{NCO}\right), 160\left(0-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{NCO})_{2}\right), 119\left(o-\mathrm{C}_{6} \mathrm{H}_{4}\right)(\mathrm{NH})_{2} \mathrm{CH}\right)$, $59\left(\mathrm{COCH}_{3}\right)$. In Table IV are presented the mass spectral data of 3: m/e $162\left(o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NH}_{2}\right) \mathrm{NHCHNCO}\right), 132\left(\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CO})_{2}\right), 104$ $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}\right)$, $108\left(\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NH}_{2}\right)_{2}\right.$. In Table V are presented the mass spectral data of 6: m/e $268\left(0-\mathrm{C}_{8} \mathrm{H}_{4}(\mathrm{NH}) \mathrm{NCNHCSNHC} \mathrm{C}_{6} \mathrm{H}_{5}\right), 228$ $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCSNHC} \mathrm{C}_{5}\right), 220\left(0-\mathrm{C}_{8} \mathrm{H}_{4}\left(\mathrm{NCS}^{2}\right) \mathrm{NHCHNCS}\right), 135\left(\mathrm{C}_{8} \mathrm{H}_{5}-\right.$ NCS), $119\left(0-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{NH})_{2} \mathrm{CH}\right), 192\left(0-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{NCS})_{2}\right)$.

Experimental Section

Mass spectra were measured with a LKB-2091 instrument working at an lonizing electron energy of 15 and 70 eV . A direct insertion probe was used in either case. For some compounds two probe temperatures were used.

NMR spectra were recorded with a $60-\mathrm{MHz}$ Tesla instrument in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ ($\mathrm{Me}_{4} \mathrm{Si}$ standard).

Syntheses. 2-Chloro-2,3-dihydrobenzimidazole (1). A $42.1-\mathrm{g}$ sample of o-phenylenediamine, 0.65 g of cuprous

Scheme I

bromide, and 4 g of stannous chloride were dissolved in 900 cm^{3} of methanol; 0.936 mol of hydrogen chloride and $32.1 \mathrm{~cm}^{3}$ of chloroform were added and the reagents were heated at 60 ${ }^{\circ} \mathrm{C}$ for 0.5 h . The methanol was evaporated and 57.35 g of crude product was obtained. The product was purified by sublimation.
2,2-Iminobls (2,3-dlhydrobenzimidazole) (5'). A 28-g sample of 1 was boiled with concentrated hydrochloric acid with $2 \times$ mole excess. The reagents were evaporated to $1 / 3$ volurne, $100 \mathrm{~cm}^{3}$ of ethanol was added, and the crystalline product was filtered and treated with NH_{3}. A brown-violet precipitate was obtained (24.5 g). The product was purified by sublimation.
Sodlum 2,3-Dihydrobenzimidazole-2-thiolate Disodium Sufflde (2). A 17.1 g g sample of o-phenylenediamine dihydrochloride and 10.4 g of o-phenylenediamine were mixed and 2.5 g of stannous chloride was added. All reagents were dissolved in $500 \mathrm{~cm}^{3}$ of methanol, $30 \mathrm{~cm}^{3}$ of chloroform was added, and the reagents were heated at $60^{\circ} \mathrm{C}$ for 4 h . The methanol was evaporated and the dry resldue was dissolved in $150 \mathrm{~cm}^{3}$ of water; at $90^{\circ} \mathrm{C}$ disodium sulfide was added. At this temperature stannous sulfide was filtered, and the filtrate was cooled, yieiding a crystalline silver-violet product (26.65 g).

2-Phthallmidyl-2,3-dihydrobenzinidazole (3). A 26.65-g sample of 2 and 48.0 g of potassium phthalimide were mixed and metted at $160^{\circ} \mathrm{C}$ for 1 h . After being cooled, the product was ground in a porcelain mortar and washed with warm water; 26.9 g of product was obtained.

4-(2,3-Dhyydrobenzinidazol-2-yl-amino)-1-oxo-1,2-dihydrophthalaz/ne (4). A 26.9-g sample of 3 was dissolved in $500 \mathrm{~cm}^{3}$ of methanol and $29 \mathrm{~cm}^{3}$ of 80% aqueous hydrazine was added. The reagents were stirred at $60^{\circ} \mathrm{C}$ for 1.5 h . After the solution was cooled, a pink precipitate was obtained.
2-Amino-2,3-dthydrobenzimidazole Hydrochloride (5). A $16.9-\mathrm{g}$ sample of 4 was treated with $10 \mathrm{~cm}^{3}$ of concentrated hydrochloric acid and $100 \mathrm{~cm}^{3}$ of water. The reagents were boiled for 10 min . The blue preciptate was filtered. Tie filtrate was neutrallized with KOH and a pink-red precipitate was filltered. The filtrate was concentrated to $50 \mathrm{~cm}^{3}$, cooled, and
extracted with a mixture of ether-benzene. The extract was evaporated and a red residue was crystallized; 1.1 g of product was obtained.

Dinethyl 2 - (Methoxycarbonyl)amino $\}-2,3$-dilhydrobenz -inldazole-1,3-dicarboxylate ($5^{\prime \prime \prime}$). A 5 -g sample of 4 was added to $50 \mathrm{~cm}^{3}$ of methyl chloroformate. The reagents were boiled at $69{ }^{\circ} \mathrm{C}$ for 5 h . A brown precipitate was filtered, the methyl chloroformate was evaporated, and 5.4 g of a dry residue was obtained.

2 -[(Phenylthlocarbamoyl)amino]-2,3-d/hydrobenz -imidazole-1,3-dicarbothloamide (6). A 8.35-g sample of 1 and 15 g of potasslum phthalimide were mixed in a porcelain mortar. The reagents were heated at $200^{\circ} \mathrm{C}$ for 2 h . The product was cooled and dissolved in $100 \mathrm{~cm}^{3}$ of methanol, and $10 \mathrm{~cm}^{3}$ of 80% aqueous hydrazine was added. The reagents were stirred under reflux for 3 h . The precipitate was filtered and the filtrate was neutralized with KOH. The filtrate was extracted with a mixture of ether-benzene and reextracted with water. The water solution was treated with 10 g of phenyl
thioisocyanate and heated and intensively stirred. After 2 ha few drops of emulsion were transferred into green solld product.

Registry No. 1, 85354-90-1; 2, 85355-01-7; 3, 85354-91-2; 4, 85354-92-3; 5, 85354-93-4; 5', 86834-46-0; 5'", 85354-94-5; 6, 85354-95-6; $\mathrm{NH}_{3}, 7664-41-7$; o-phenylenedlamine, 95-54-5; chloroform, 67-66-3; 0 -phenylenediamine dihydrochiorlde, 615-28-1; potassium phthalimide, 1074-82-4; hydrazine, 302-01-2; methyl chloroformate, 79-22-1; phenyl isothiocyanate, 103-72-0.

Lliterature CHed

(1) Nemeth, S.; Simaudi, L. J. Mol. Catal. 1982, 14, 87.
(2) Craig, I. C.; Ekwuribe Nuochiri, N.; Fu Cherug, C.; Walker, K. A. M. Synthesls 1981, 4, 303.
(3) Smith, D. M. Chem. Heterocycl. Compt. 1981, 40, 331.
(4) Grifflth, D.; Hull, R.; Seden, T. P. J. Chem. Soc., Perkin Trans. 1 1980, 16, 1240.
(5) Falury, A. F. M.; All Nawal, F.; Essawy, S. A. Egypt. J. Chem. 1977, 20, 1.
(6) Studnickl, M. Ind. Eng. Chem. Prod. Res. Dev., in press.

Received for review February 28, 1983. Accepted June 1, 1983.

Reaction of 4,6-Diarylhexahydro-1,3,5-triazine-2-thiones with α-Haloketones. 3

Adly Abdel-Wahld Soliman

Natlonal Instltute for Standards, Dokkl, Cairo, A. R. Egypt

Abstract

4,6-Dlarylhexahydro-s-trlazine-2-thiones reacted with α-haloketones to give the S-substituted derivailves, which were cycilzed to subsithuted thlazolo[3,2-a]-s-irlazines. 7-(3-Aryl-2-propenoyl)-6-methyl-2,4-diphenyl-2,3,4-trihydro-thlazolo[3,2-a]-s-triazines were prepared and their behavior toward amine derivatives and benzamidine was Investigated.

In continuation of my previous work on the reaction of triazinethiones (1,2), I report here on the reaction of triazinethiones with α-haloketones.

Expertmental Section

Satisfactory elemental analyses were found.
4,6-Diaryl-3,4,5,6-tetrahydro-2-(phenacyithlo)-1,3,5trlazines ($I I a, b, d, e, g, h$). A solution of about 1 g of $\mathrm{Ia}-\mathrm{c}$ in 25 mL of ethanol, to which 3 mL of 10% sodlum hydroxide solution had been added, was treated with an equimolecular quantity of the phenacyl bromide, refluxed for 2 h , and left overnight. The precipitate was collected and crystallized (see Table I).

4,6-Dlaryl-3,4,5,6-tetrahydro-2-(2,4-dloxopent-3-yl-thio)-1,3,5-trlazines ($I I c, f, I)$. A mixture of 0.1 mol of I in 200 mL of ethanol and $5.6 \mathrm{~g}(0.1 \mathrm{~mol})$ of 85% potassium hydroxide was heated at $70-80^{\circ} \mathrm{C}$ for 10 min . After the resulting solution was cooled to $30^{\circ} \mathrm{C}, 13.45 \mathrm{~g}(0.1 \mathrm{~mol})$ of α chloroacetylacetone was added in one portion. An exothermic reaction set in causing a temperature rise from 30 to $40^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 18 h and added to 200 g of ice water. The precipitates which formed by stirring were collected by filtration, washed with water, and crystallized (see Table I). The IR spectrum of IIc shows an absorption band at $1705 \mathrm{~cm}^{-1}$ (CO) and a broad band at $3100 \mathrm{~cm}^{-1}$ (NH and OH) while the IR spectrum of Ila shows only a broad band at $3050 \mathrm{~cm}^{-1}$ (NH and OH). Compounds II

$\mathrm{Ia}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}$
II
b, $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4}^{5} \mathrm{OCH}_{3}-p$
c, $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p$

II'

III

$$
\text { II, IIIa, } \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathbf{R}=\mathrm{H} ; \mathbf{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}
$$

$$
\mathrm{b}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathbf{R}=\mathrm{H} ; \mathbf{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{4}^{5} \mathrm{CH}_{3}-p
$$

$$
\mathrm{c}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}=\mathrm{COCH}_{3} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3}
$$

$$
\begin{aligned}
& \mathrm{c}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5} ; \kappa=\mathrm{OUR} \\
& \mathrm{~d}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH} \\
& 3
\end{aligned}
$$

$$
\text { e, } \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-p ; \mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p
$$

$$
\mathrm{f}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}-p ; \mathrm{R}=\mathrm{COCH}_{3} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3}
$$

$$
\mathrm{g}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p ; \mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}
$$

$$
\begin{aligned}
& \mathrm{h}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p ; \mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}-p \\
& \mathrm{i}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p ; \mathrm{R}=\mathrm{COCH}_{3} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3}
\end{aligned}
$$

$A=$ phenacyl bromides
$B=\propto \cdot$ chloroacetylacetone
$C=$ polyphosphoric acid
give a deep color with ferric chloride solution. Compounds II exist in the enolic form II^{\prime}.

